If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+40y-198=0
a = 2; b = 40; c = -198;
Δ = b2-4ac
Δ = 402-4·2·(-198)
Δ = 3184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3184}=\sqrt{16*199}=\sqrt{16}*\sqrt{199}=4\sqrt{199}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-4\sqrt{199}}{2*2}=\frac{-40-4\sqrt{199}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+4\sqrt{199}}{2*2}=\frac{-40+4\sqrt{199}}{4} $
| 8v+10=4v+30 | | 11.6+5y=8y+5 | | 3w+1=6w+16 | | 2u+31=6u-15 | | 3+2t-1=8t+4-5t | | -7/5v=-42 | | 4t-3=11-3t | | x+3/5=3/1 | | x=2x3-4 | | −4.8f+6.4=(−8.48) | | 10w=10,000w= | | -9x=10-8x | | 5+5n-3=7n+4-3n | | -3x+1=-x+6 | | 6x-3=-2x-3 | | 24-9x=4+x | | 3x-2=x-18 | | 14x-15=9x+5 | | 6x+5=17 | | 3/m-2+4/m+2=7/m | | 7x=-2x-27 | | 12k=40+2k | | 25+2x=28+x | | 12m-6=6m+54 | | 7-2a=15 | | z5 | | z5-250=0 | | 5w/3=4w+10 | | 11–6t=3t11–6t=3t | | 3(x+4=2(x-5) | | 5x+20=2x–10 | | 2x+2/3x=40 |